8. Sequences and Series
normal

If  ${x_r} = \cos (\pi /{3^r}) - i\sin (\pi /{3^r}),$ (where  $i = \sqrt{-1}),$ then value  of $x_1.x_2.x_3......\infty ,$ is :-

A

$1$

B

$-1$

C

$-i$

D

$i$

Solution

${{\rm{x}}_1} \cdot {{\rm{x}}_2} \cdot {{\rm{x}}_3}…………….\infty $

$ \Rightarrow \left( {\cos \frac{\pi }{3} – i\sin \frac{\pi }{3}} \right)\left( {\cos \frac{\pi }{9} – i\sin \frac{\pi }{9}} \right)………\infty $

$\Rightarrow \cos \left(\frac{\pi}{3}+\frac{\pi}{9}+\frac{\pi}{27}+\cdots\right)-i \sin \left(\frac{\pi}{3}+\frac{\pi}{9}+\frac{\pi}{27}+\cdots \infty\right)$

$\Rightarrow \cos \frac{\pi}{2}-i \sin \frac{\pi}{2}=-i$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.